
The burden of chronic rhinosinusitis with nasal polyps CRS is an inflammatory condition of the upper airways¹

Estimates of global CRS prevalence vary: >10% of the population has been estimated to have CRS based on symptomatic or objective evidence, while the presence of both has produced estimates of **<5%**.¹

CRS with nasal polyps (CRSwNP) represents **18-30%** of all cases of CRS.¹⁻³ CRSwNP is characterized by the presence of nasal polyps and chronic

sinonasal inflammation, which can result in symptoms such as:4

CT image of a patient with severe CRSwNP⁵ N

Nasal congestion

Nasal discharge Facial pain/pressure

Facial pain/pressure Impaired sense of smell

CRSwNP represents heterogeneous, and often overlapping, endotypes⁹

CRSwNP can be divided into **three endotypes** based on the inflammatory profiles associated with **specific immune cells**, **cytokines**, and **dominant clinical features**:¹⁰

Туре 1	Туре 2	Туре З
IFN-γ and IL-12 ¹⁰	IL-4, IL-5, and IL-13 ¹⁰	IL-17 and IL-22 ¹⁰
ILC1, NK cells, Th1 cells, CD8+ T cells, and M1 macrophages ¹⁰	ILC2, eosinophils, basophils, mast cells, Th2 cells, and M2 macrophages ¹⁰	ILC3, neutrophils, and Th17 cells ¹⁰
Headache and facial pain ⁹	Loss of sense of smell and comorbid asthma ²⁻¹¹	Purulent rhinorrhea ²⁻¹¹

In the US, Europe and Australia, Type 2 was the most common endotype of CRSwNP.¹⁰

• Many patients with CRSwNP have a **mixed endotype**, and ~9% have **no clear endotype**.^{9,11a}

Despite medication and surgery, many patients with CRSwNP have uncontrolled disease¹⁵

In a survey of **437 physicians**, **70%** reported that **OCS** provide only **temporary symptom relief** in CRSwNP.¹⁶

38% of patients (n=125) experienced **polyp recurrence** 12 months after medical therapy and sinus surgery.^{15c}

~80% of patients with CRSwNP (n=212) experienced inadequately controlled symptoms within 3 to 5 years after surgery.^{17d}

Quality of life can be further reduced for patients with CRSwNP and comorbid asthma. $^{\rm 8}$

CRSwNP is frequently associated with asthma⁸

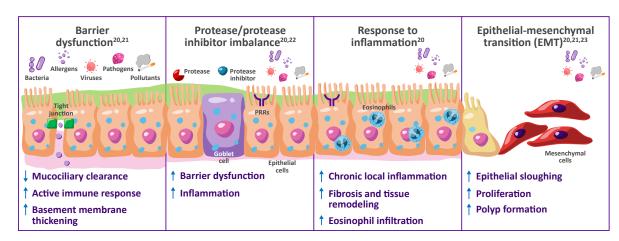
In asthmatic patients, comorbid CRSwNP is associated with increased exacerbation frequency, increased symptom severity, and reduced quality of life.^{8,14}

Did you know?¹⁸

- NPS is often used as a primary outcome in clinical trials for CRSwNP.
- NPS uses endoscopy to assess **polyp size** in each nostril, ranging from 0 to 4.
- Total NPS is the sum of the scores for each nostril (0-8); higher scores indicate more severe disease.

^aPatients without a clear endotype are defined as those expressing biomarkers below detection thresholds;^{9,11} bRange: 5–56%;³³ cMedical therapy included, but was not limited to, at least one course of either topical corticosteroids or a course of OCS therapy and at least one course of broad-spectrum or culture-directed antibiotics;¹⁵ dControl was assessed using mean total VAS, SNOT-22, and SF-36 scores in patients with CRSwNP 3–5 years after FESS.¹⁷

CRS, chronic rhinosinusitis; CRSwNP, chronic rhinosinusitis with nasal polyps; CT, computed tomography; EMT, epithelial-mesenchymal transition; FESS, functional endoscopic sinus surgery; IFN, interferon; IL, interleukin; ILC, innate lymphoid cell; NK, natural killer; NPS, nasal polyp score; OCS, oral corticosteroid(s); PRR, pattern recognition receptor; SF-36, Short Form 36-item Health Survey; SNOT-22, Sino-Nasal Outcome Test-22; Th, T helper; tPA, tissue plasminogen activator; TSLP, thymic stromal lymphopoietin; VAS, visual analog scale.



Veeva ID: Z4-72513; date of preparation: April 2025. © 2025 AstraZeneca. All Rights Reserved. This information is intended for healthcare professionals only. EpiCentral is sponsored and developed by AstraZeneca.

The central role of the epithelium in CRSwNP

The nasal epithelium is significantly altered in CRSwNP and plays a critical role in the disease¹⁹

В

B

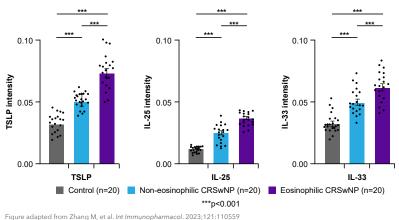
-Vasculature

Disruption of the epithelium augments inflammation and is central to nasal polyp formation:*

> Epithelial damage triggers EMT; mesenchymal cells alter inflammatory and remodeling processes.^{23,24}

Epithelial cytokines TSLP and IL-33 drive multiple downstream processes, including mast cell activation and production of IL-4, IL-5, and IL-13.20

Mast cells and basophils drive mucosal edema, resulting in plasma leakage.²⁰


D Cross-linked fibrin forms a dense mesh and promotes edema.^{20,22}

Elevated IL-4 and IL-13 suppress the expression of tPA and prevent breakdown of fibrin.^{20,25}

*The role of IL-25 in nasal polyp formation requires further elucidation.

Role of epithelial cytokines in CRSwNP

Epithelial cytokines are released in response to environmental irritants, such as allergens, pathogens, and pollutants.²⁶

TSLP, IL-25, and IL-33 are increased in nasal mucosal epithelial tissue from patients with CRSwNP compared with controls, with the highest levels observed in eosinophilic CRSwNP.²⁶

TSLP, the TSLP receptor, and the IL-33 receptor correlated with increased disease severity and Type 2 inflammation²⁷

Did you know?

CRSwNP and asthma share similar features of airway remodeling and inflammation.^{28,29}

Their shared pathophysiology and frequent co-occurrence support the concept of united airways disease, in which the upper and lower airways are linked anatomically, histologically, and immunologically.³⁰⁻³²

In the otic 12 and in hasa polynometor requires further elucidation.
I. Sedaghat AR, et al. J Allergy Clin Immunol Pract. 2021;0:1395-1403; 2. Benjamin MR, et al. J Allergy Clin Immunol Pract. 2016;4:565-572;
4. Orlandi RR, et al. J Allergy Clin Immunol Pract. 2021;0:1395-1403; 2. Benjamin MR, et al. J Allergy Clin Immunol Pract. 2016;4:565-572;
4. Orlandi RR, et al. Int Forum Allergy Rhinol. 2021;11:213-739; 5. Schleimer RP. Annu Rev Pathol. 2017;12:331-357; 6. Bachert C, et al. J Asthma Allergy. 2021;14:127-134; 7. Mullol J, et al. J Allergy Clin Immunol Pract. 2016;4:565-572;
10:1434-1453.e9; 8. Laidlaw TM, et al. J Allergy Clin Immunol Pract. 2021;9:1133-1141; 9. Hao D, et al. J Inflamm Res. 2022;15:5555-5565; 10. Staudacher AG, et al. Ann Allergy Asthma Immunol. 2024;132:42-53; 14. Denlinger LC, et al.
11: Stevens WW, et al. J Allergy Clin Immunol Pract. 2019;7:2812-2820.e3; 12. Reddel HK, et al. Eur Respir J. 2021;35:2003927; 13. Scelo G, et al. Ann Allergy Asthma Immunol. 2024;132:42-53; 14. Denlinger LC, et al. Am J Respir Crit Care Med. 2017;195:302-313; 15. DeConde AS, et al. Laryngoscope. 2017;127:550-555; 16. De Corso E, et al. J Pers Med. 2022;12:897; 17. van der Veen J, et al. Allergy. 2017;72:282-290; 18. Gevaert P, et al Allergy. 2023;78:912-922; 19. Petalas K, et al. Int J Mol Sci. 2023;24:12379; 20. Kato A, et al. J Allergy Clin Immunol. 2022; 149:1491-1503; 21. Saitoh T, et al. Rhinology. 2009;47:57–279; 22. Takabayashi T, Schleimer RP. J Allergy Clin Immunol. 2020;145:740-750; 23. Chiarella E, et al. Int J Mol Sci. 2020;21:6878; 24. Wang Y, et al. Sci Rep. 2024;14:2270; 25. Hulse KE, et al. Clin Exp Allergy. 2015;45:328-346; 26. Zhang M, et al. Int Immunopharmacol. 2023;121:110559; 27. Liao B, et al. Allergy. 2015;70:1169-1180; 28. Siddiqui S, et al. J Allergy Clin Immunol. 2023;152:841-857; 29. Patel NN, et al. Int Forum Allergy Rhinol. 2019;9:93-99; 30 De Corso E, et al. J Pers Med. 2022;12:846; 31. Fokkens W, Reitsma S. Otolaryngol Clin North Am. 2023;56:1-10; 32. Jakwerth CA, et al. Cells. 2022;11:1387; 33. Chen S, et al. Curr Med Res Opin 2020;36:1897-1911

TSι

IL-33

Basophils

Cross-linked fibrin

D

Fibrin: FXIIIa

Fibrinoger

Plasma leak C

Veeva ID: Z4-72513; date of preparation: April 2025. © 2025 AstraZeneca. All Rights Reserved. This information is intended for healthcare professionals only. EpiCentral is sponsored and developed by AstraZeneca.

